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Abstract-The kinematic vorticity number (W,) can be calculated for three-dimensional as well as two- 
dimensional geologic deformations. For steady-state deformations, W, can be correlated to and analyzed in 
terms of finite strains. The analysis shows that assumptions commonly made for two-dimensional deformations 
are not applicable to three-dimensional deformations. A single W, describes an infinite number of three- 
dimensional deformations. Further, even knowledge of flow apophyses orientation, instantaneous stretching 
axes orientation, and/or W, are not sufficient to describe deformation. Three-dimensional deformations also 
require knowledge of the deformation ‘type’ or boundary conditions of deformation (e.g. transpression). Hence, 
in addition to being difficult to estimate, the value of knowing W, for three-dimensional deformations is greatly 
reduced compared with plane strain. The most useful methods of determining W, from naturally deformed rocks 

INTRODUCTION 

The kinematic vorticity number (W,) was first intro- 
duced into the geological literature by McKenzie (1979) 
and Means et al. (1980). W, has its origin in fluid 
dynamics (Truesdell 1953) and records the amount of 
rotation relative to the amount of stretching, at a point in 
space and in an instant in time. Therefore, W, analyses 
can distinguish, for example, intermediate cases be- 
tween pure shear (W, = 0) and simple shear (W, = 1). 
The application of kinematic vorticity analysis to geo- 
logic problems was greatly facilitated by the use of the 
Mohr circle for strain (Means 1983, De Paor & Means 
1984, Passchier 1988a). Using Mohr circle construc- 
tions, estimates of W, from deformed vein sets became 
possible (Passchier & Urai 1988). Other studies of 
kinematic vorticity (Vissers 1989, Wallis 1992, Passchier 
1990, Simpson & De Paor 1993, Tikoff & Teyssier 
1994a) have used increasingly sophisticated methods for 
determining W,. 

Three-dimensional analyses of both individual shear 
zones and tectonic settings are becoming more common 
in the geological literature. Ramberg (1975a,b) and 
McKenzie (1979) were two early attempts to quantify 
three-dimensional deformation, although neither 
specifically includes kinematic vorticity. The three- 
dimensional kinematic vorticity number can be given in 
terms of the components of the velocity gradient tensor 
L and, assuming steady-state deformation, the defor- 
mation matrix (or position-gradient tensor) D (Appen- 
dix A), (Tikoff & Fossen 1993). This mathematical 
framework allows a direct correlation of W, to the 
instantaneous stretching axes (ISA), flow apophyses, 
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Flow apophyses 
Deformation matrix, position gradient tensor 
Volume change strain rate 
Anisotropic volume change 
Pure shear strain rate 
Simple shear strain rate 
Shear strain (simple shear component) 
Effective shear strain 
Instantaneous stretching (strain) axis 
Invariant second moment of the stretching tensor 
Stretches along coordinate axes 
Quadratic principal stretches of the finite strain ellipsoid, 

eigenvalues of the matrix DD* 
Finger tensor, for calculating finite strain 
Velocity gradient tensor 
Stretching tensor 
Principal stretching (strain) rates, eigenvalues of matrix s; 

magnitudes of ISA 
Angle between the long axis of instantaneous strain (ISA) 

and the x-coordinate axis 
Angle between the long axis of the finite strain ellipse and 

the x-coordinate axis 
Velocity vector 
Vorticity tensor 
Vorticity vector 
Magnitude of the vorticity vector 
Local angular velocity vector 
Magnitude of angular velocity vector 
Kinematic vorticity number, general vorticity 
Kinematic vorticity number, external vorticity 
Kinematic vorticity number, internal vorticity 
Vertical coordinate axis 

and finite strain for three-dimensional deformations. 
Based on this framework, we discuss the use and limi- 
tations of the kinematic vorticity number in three dimen- 
sions. 
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KINEMATIC VORTICITY NUMBER (W,) 

Origin and definition 

The kinematic vorticity number (Truesdell 1953) is 
defined in a fluid that flows with a velocity v which varies 
in space. The vorticity is the vector defined as w = 20 
(angular velocity vector) = curl v. Thus, the vorticity 
vector w is parallel to the angular velocity vector o and 
has twice its magnitude. The angular velocity w may be 
interpreted as: (1) the average rotation of all lines in the 
plane perpendicular to v; (2) the rate of rotation of a set 
of material lines that are parallel to the instantaneous 
stretching axes (ISA) with respect to the ISA; (3) the 
average rate of rotation of any two perpendicular 
material lines in the plane perpendicular to v; or (4) the 
rate of rotation of a rigid spherical inclusion in a ductile 
matrix (strictly true only for a particle with no slip along 
its boundaries and infinitely high viscosity contrast) 
(Means et al. 1980, Ghosh 1987). 

The vorticity indicates both the direction and rate of 
rotation of the fluid at a point. To understand what 
vorticity physically represents, one can imagine a spheri- 
cal element of the fluid that suddenly freezes while the 
surrounding fluid disappears (Kreyszig 1972, p. 621). 
What would remain is a small sphere of (frozen) fluid 
which rotates with an angular velocity o at that point in 
space (Fig. 1). The vorticity vector would be the axis 
about which the fluid sphere is revolving most rapidly, 
and its magnitude (or length) indicates the rate of 
rotation at that point. 

In search for a dimensionless measure of the non- 
coaxiality of deformation, Truesdell (1953) pointed out 
that it must be a ratio between the ‘rotation’ and the 
‘pure deformation’ (or change of shape) involved. The 
latter is conveniently described by the principal stretch- 
ing rates Sr, S2 and 8s which are the eigenvalues of the 
stretching tensor S (Appendix A). Therefore, the kine- 
matic vorticity number W, was defined as 

Fig. 1. Illustration of the vorticity vector (w) and its relation to a 
rotating rigid sphere with no slip along its boundaries in a deforming 

rock. 

w,= W 20 = 
~2(57+.g+$) ti2($+$+& 

* (1) 

For irrotational deformations, such as pure shear, the 
numerator in equation (1) goes to zero and W, = 0. For a 
rigid rotation with no stretching, the denominator in 
equation (1) goes to zero and the deformation is charac- 
terized by W, = ~0. Wk > 1 correlates to pulsating 
deformation histories (Ramberg 1975a), while simple 
shearing deformations are described by W, = 1. Notice 
that Wk does not record rate of rotation, but rather 
‘quality’ of rotation (Ghosh 1987). W, describes, instan- 
taneously, how fast the stretching of the ISA occurs with 
respect to overall rotation, with respect to an external 
reference frame. 

Conventions for Wk analyses 

Any velocity field can be decomposed into three 
components: (1) rate of translation; (2) rate of stretch- 
ing; and (3) rate of rotation (Truesdell 1953, Lister & 
Williams 1983). We will assume that translation can be 
treated separately and will not address this aspect of 
deformation. Generally, the rotation component de- 
fines the vorticity and the stretching component defines 
the instantaneous stretching (or strain) axes. However, 
we can further partition the vorticity into (1) shear- 
induced or internal vorticity (W,J, which is caused by a 
non-coaxial component of deformation; and (2) spin or 
external vorticity (W,J, which results in rotation of the 
instantaneous strain (or stretching) axes through an 
external reference frame (Means et al. 1980). Kinematic 
vorticity thus incorporates both the internal and the 
external spin of the system (Lister & Williams 1983): 

W, = f( W,,, W,?, rigid body rotation). (2) 

Consequently, W, is a Lagrangian concept. That is, to 
truly quantify the type of deformation, one must choose 
an external reference frame and quantify deformation in 
this context. In contrast, most field geology is, by neces- 
sity, Eulerian. Commonly used vorticity criteria, such as 
porphyroblast or crystallographic fabric studies (see 
below), only record internal vorticity ( Wkg). With these 
criteria, we may be able to determine the amount of 
internal stretching vs rotation at a single outcrop, but we 
are unlikely to be able to determine the amount of 
larger-scale external spin. Hence, as we try to relate 
vorticity to rocks, we will concentrate on the internal 
vorticity W,,. Upper triangular velocity-gradient and 
position-gradient tensors, such as presented in this 
paper, inherently contain only shear-induced or internal 
vorticity, and are therefore used in the following dis- 
cussion of three-dimensional strain. 

Throughout this analyses, we have chosen to use the 
flow apophyses parallel to the x-axis as our reference 
frame, following Weijermars (1991) and Simpson & De 
Paor (1993). In order to apply this reference frame to a 
field study, one must assume that the x-axis parallels the 
shear zone boundary. However, if this assumption 
holds, one can easily model non-steady-state defor- 
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mations, using the same reference plane, since the x- 
parallel flow apophysis remains fixed. Further, the flow 
apophyses have some physical meaning for finite, as well 
as instantaneous, strain. Generally, the long axis of the 
finite strain ellipsoid rotates into parallelism with one of 
the flow apophyses, a situation which is easy to visualize 
for plane strain deformations. 

Notice that other reference frames are also possible. 
Passchier (1988b) chooses to define his coordinate sys- 
tem with respect to the ISA, because the ISA remain 
perpendicular and fixed in space throughout a steady- 
state deformation. However, since the orientation of the 
ISA and flow apophyses are fixed with respect to each 
other, either choice is acceptable. 

DEFORMATION THEORY 

For any deformation, the kinematics are defined in- 
stantaneously by the velocity field given by the velocity 
gradient tensor L (Means 1990). The most general three- 
dimensional velocity field is given by 

Equation (3) includes internal vorticity, external vorti- 
city, and rigid body rotation. The corresponding kine- 
matic vorticity number can thus be written as (Appendix 
A): 

While this may be useful in certain applications, such as 
computational modeling, geologists rarely have the 
ability to evaluate external vorticity and rigid body 
rotation. Therefore, we would like to have a relation 
that expresses only internal vorticity. 

A general, non-spinning, three-dimensional defor- 
mation that combines a general coaxial deformation, 
with or without volume loss, and any of the three 
orthogonal simple shears whose movement is parallel to 
a coordinate axis (see Tikoff & Fossen 1993), a velocity 
gradient tensor is given by 

(5) 

where ii are the pure shear strain rates and fi are the 
simple shear strain rates. Anisotropic volume loss can 
be incorporated into the above tensor by substituting 

D= 

into the pure shear strain rates (Sanderson 1976, Fossen 
& Tikoff 1993). Upper triangular matrices do not con- 
tain an external spin component and record only internal 
vorticity. 

The deformation matrix D that corresponds to the 
velocity gradient tensor L given in equation (5) can be 
expressed as equation (6) (Tikoff & Fossen 1993) and 
the related internal kinematic vorticity number is 

Merle (1986) showed that steady-state deformations 
could be put into time-independent solutions. Using the 
relations 

i;Z = YXJC ‘iyz = Y& ?!X;,, = YX& 

and 

exp(&t) = k,, exp(@) = ky, exp(i,t) = k,, 

and for unit time: 

i, = Ink,, iy = Inky, iz = In kZ, 
(8) 

+X* = ‘yn.?, Yyz = Yy,, I&,,, = Yxy 3 

we can write a time-independent solution of the defor- 
mation tensor kx L, rxz 

D = 0 ky ryz , 

[ 1 0 0 k, 
Pa) 

where 

‘IXY = r,y(kx - ky) 
ln(k,lk,) ’ 

(9b) 

r 
x.? 

= y&x - kz) + ~xy~,&x - k,) 

Wx W ln(k,lk,) ln(k,lk,) 

Yxyl/yz(k, - k,) 
’ ln(kJk,) ln(k,lk,)’ 

(9c) 

r = yyz@y - kz) 
Y* WY k) 

(Tikoff & Fossen 1993); k,, k, and k, represent the finite 
stretches along the x-, y- and z-coordinate axes (includes 
volume change if kJc,,k, # 1)) and the off-diagonal terms 
(I) represent elements of shear deformation. If we 
consider a left-handed coordinate system, IXy reflects a 
wrench in the x-direction, and IXZ and IvZ correspond to 
thrusts in the x- and y-directions, respectively. The 
eigenvalues and eigenvectors of the matrix DDrgive the 

Gexp(4t) - exp(k)) 
($’ - 9 

exp(Q) I (6) 
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magnitude and orientation of the finite strain ellipsoid 
(e.g. Flinn 1979). 

If we assume a steady-state deformation, we can use 
the same relations [equation (9)] for three-dimensional 
kinematic vorticity to finite strain. Under these special 
conditions, W, remains constant during deformation. 
Therefore, Wki-by definition an instantaneous quan- 
tity [equation (l)]-can be expressed in terms of finite 
strain values: 

wk, = 

Similarly, one can express L [equation (5)], the orien- 
tation of the flow apophyses and the orientation of the 
ISA in time-independent terms. 

Most geological applications have used two- 
dimensional Wk estimates (e.g. Means et al. 1980, 
Bobyarchick 1986, Passchier 1990, Weijermars 1991). 
The above analysis is simply an extension of these earlier 
analyses into three dimensions. Robin & Cruden (1994) 
use a ‘sectional’ W, value, which calculates W, in a 
(two-dimensional) section for a three-dimensional de- 
formation. For the special case of plane strain, the 
internal kinematic vorticity number can be expressed as 

Wki = cos[arctan (ln(k,lk,)/y)] (II) 

and the acute angle a between the two flow apophyses as 

a = arctan[ln(k,lk,)/y] (12) 

(Tikoff & Fossen 1993), where 

Wki = cos a (13) 

Bobyarchick (1986). The simple relationship between 
flow apophyses and ISA for plane strain is given by 

a = 90 - 28 (1% 

and 

a’ = 28 (14b) 

(Weijermars 1991) where a’ is the angle between the 
oblique flow apophyses and the y-axis. The relationships 
between a, a’, 8 and W, are shown graphically in Fig. 2. 

These relationships are more complex for three- 
dimensional deformations, as no simple relationship 
exists between Wki and a, CI’ and 8. Hence, the relation 
between Wki and the ISA given by 

wki = cos (90 - 28) (15) 

(Bobyarchick 1986) only holds for plane strain defor- 
mations. 

THREE-DIMENSIONAL W, ANALYSIS 

Unlike plane strain deformation (Fig. 2), the orien- 
tation for flow apophyses and/or the ISA does not define 
a unique kinematic vorticity for three-dimensional de- 
formation. In other words, there is no relationship 
between the orientation of the flow apophyses and W,. 
Figure 3 shows three separate deformations: (a) plane 
strain deformation; (b) flattening and a simple shear; 
and (c) transpression. These fundamentally different 
deformations can all lead to identical orientations of the 
flow apophyses and ISA, but with different Wki values. 
Further, the three aforementioned cases are all ‘end- 
members’ of deformational histories and an infinite 
number of ‘intermediate’ deformations will cause the 
same orientation of flow apophyses and ISA. 

An intuitive understanding of three-dimensional vor- These results highlight a serious problem with Wk 
ticity is not straightforward. The extension of kinematic analyses: a given Wki represents an infinite number of 
vorticity from two dimensions to three dimensions is deformations. Therefore Wki, by itself, is not sufficient 
easy to visualize for cases where one of the three ISA is for describing particle movement or flow during defor- 
non-rotating. In this case, the vorticity vector becomes mation. In two-dimensional, plane strain deformation, 
parallel to the non-rotating ISA. In the general case, the the same kinematic vorticity number could refer to 
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Fig. 2. The relationship of w, with the acute angle (a) between the 
flow apophyses, angle between the oblique flow apophysis and the 
normal to the deformation zone (a’) and with the orientation of the 
ISA (instantaneous stretching axes); f3 defines the angle between the 

extensional ISA and the boundaries of the deformation zone. 

interpretation of the vorticity vector becomes more 
abstract, but the vorticity vector (w) is always perpen- 
dicular to the plane containing the maximum rotation. 
For general three-dimensional strain, w will not have 
any predetermined orientation with respect to the ISA, 
unlike simple shear where w is parallel to the shear zone 
and perpendicular to the shear direction. 
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(a) Sub-simple shear 

Y 

=i= 

(plane strain) 

*P2 

(b) Flattening + simple shear 

AP2 

(c) Transpression 
Fig. 3. Orientations of flow apophyses (black arrows), ISA (white arrows) and flow lines (light lines) for three 
three-dimensional deformations. The right diagrams depicts flow in AP,-AP, plane. Each case corresponds to a different 

W, value. 

either a pure shear shortening or extension along the deformations 
x-direction (e.g. Weijermars 1991, Simpson & De Paor mation. 

and can not uniquely define a defor- 

1993). This problem is exacerbated in three dimensions, Another problem that is specific to three-dimensional 
where even with a known, single simple shear direction, Wk analysis regards its relation to other instantaneous 
a given WkL could indicate a constrictional, flattening, strain quantities. For plane-strain deformations, the 
transpression, plane strain, or an infinite variety of orientation of the flow apophyses or ISA uniquely 
intermediate types of deformation. Therefore, a single, defines Wki. This is not true for three-dimensional defor- 
three-dimensional Wki describes an infinite number of mation. Here, the orientation of the flow apophyses 
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SIMPLE SHEAR PURE SHEAR 

SIMPLE SHEAR CONSTRICTION 

IMPLE SHEAR 

Fig. 4. (a) Plane strain; (b) constriction with simple shear; and (c) 
flattening with simple shear deformations that result in an identical 
finite strain ellipse in the x-z plane; W,, is lower for the flattening/ 

constriction cases (b,c) due to the greater non-coaxial component. 

and/or ISA cannot, without knowledge of ‘type’ of 
deformation (e.g. general flattening combined with 
shearing; Fig. 4c), be used to calculate W,. Notice that 
the reverse is also true: different ‘types’ of deformation 
(such as those in Fig. 3) could have the same W,!, but 
each would result in different orientations of the ISA 
and flow apophyses. To calculate Wkt for three- 
dimensional deformations, a qualitative description of 
the type of deformation and the orientation of the ISA 
or flow apophyses (or finite strain for steady-state defor- 
mations) are necessary. 

If one could determine W,, the orientation of the ISA 
(or flow apophyses), and the magnitude of the ISA (or 
flow apophyses), the three-dimensional deformation 
could be uniquely determined. However, since rates of 
deformation in geological materials are very difficult to 

assess, this method is unlikely to be usable by structural 
geologists. 

Consequences of treating three-dimensional 
deformations in two dimensions 

Because vorticity has mostly been treated in two 
dimensions in the literature, a brief three-dimensional 
example is given here. Consider the case of a single 
simple shear acting simultaneously with a three- 
dimensional coaxial deformation (Figs. 4b & c). In this 
situation, the kinematic vorticity number, in terms of 
finite deformation parameters, simplifies to 

wkt = 
Y 

.,,,I 
2[ln(kr)’ + ln(Q’+ ln(k,)‘] + (r,,)2’ (16) 

We would like to know how a three-dimensional com- 
ponent of deformation would modify the results of a 
two-dimensional approximation of Wk, (Appendix B). 
For two dimensions, let us consider a pure shear defor- 
mation (k, = 2, k2 = 1 and k3 = 0.5) combined with a 
simple shear component y = 1 (Fig. 4a). Substituting 
these values into equation (16), we find that this defor- 
mation produces a W, = 0.585. We would then like to 
know how a third coaxial component of deformation 
would alter the Wki value, for a constant magnitude of 
the finite strain ellipse in the x-z plane. To investigate 
this effect, we require that the same deformation occurs 
in the x-z plane-namely, a pure shear component of 4: 1 
(kllk3 = 4) combined with a simple shear component 

of 3/X.? = 1. Since we are assuming no volume loss, 
klk2k3 = 1; k, is horizontal and in the shear direction 
(x-axis), k2 is horizontal and perpendicular to the shear 
direction (y-axis) and k3 is vertical (z-axis; Fig. 4). The 
magnitude of k2 determines whether one gets constric- 
tional (Fig. 4b) or flattening (Fig. 4c) strain. 

The calculations are shown in Appendix B. In all three 
cases, the vorticity vector (w) is parallel to the y-axis. 
For an identical finite strain ellipse in the X-Z plane, both 
COnStriCtiOn and flattening reqUirf2 an identical W, = 
0.530, which is lower than the Wkt of the plane strain 
example (Wk, = 0.585). Since Wkj = 0 for any three- 
dimensional, coaxial deformation, a lower kinematic 
vorticity number means that the coaxial component of 
deformation is more dominant. The extra coaxial com- 
ponent in the flattening and constrictional deformations 
counteracts the vorticity (w) and should therefore re- 
duce Wki. A more visual approach is to consider the case 
of material lines during these deformations. The 
material lines will rotate less as they become oriented 
closer to the intermediate flow apophysis or y-axis. 

There is a substantial effect of the third dimension on 
estimates of Wki. Generally, when making field 
measurements, plane strain deformation is assumed but 
not conclusively demonstrated. Any vorticity analysis 
done in two dimensions will tend to overestimate the 
actual, three-dimensional, kinematic vorticity number, 
although the error caused by assuming plane strain in the 
example above should not be greater than ca. 0.05 (Fig. 
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Fig. 5. The difference between the two- and three-dimensional wk, 

values for deformations shown in Fig. 4. If plane strain is assumed tor a 
three-dimensional deformation, a Wk, error of 0.05 is possible. 

5). Three-dimensional effects should, therefore, be in- 
cluded, if possible, in estimates of Wki. 

The W,, value of simple shear with flattening and 
simple shear with constriction are identical, since the 
kinematic vorticity number simply records, in a non- 
linear manner, the relative magnitudes of the k and y 
values. In order to achieve a 4:l coaxial strain com- 
ponent in the x-z plane, constrictional or flattening 
strain must express an equal amount of coaxial defor- 
mation in the y-direction (Fig. 4). The only distinction is 
that the coaxial deformation in the y-direction flows 
inward in constriction and outward in flattening. The 
direction of flattening or constriction also does not affect 
Wkt, analogous to the two-dimensional case. The maxi- 
mum elongation direction of the coaxial component, in 
the case of constriction, or maximum shortening direc- 
tion, in the case of flattening, could be parallel to the x-, 
y-, or z-axis and would not affect W,, (although some 
cases would affect the finite strain in the X-Z plane). 

Stress and vorticity analysis 

Weijermars (1991) suggests that vorticity analysis can 
indicate the direction of paleostress involved with ductile 
deformation. Since a vorticity analysis would indicate 
the orientation of the flow apophyses and instantaneous 
strain, the stress axes were simply assumed to be parallel 
to the ISA. While there is nothing incorrect about the 
analysis, its limitations were not emphasized. In particu- 
lar, the use of stress introduces several assumptions, the 
most critical being use of a rheology, in this case a 
Newtonian viscosity. Very few materials, especially geo- 
logical materials, act with a linear relationship between 
stress and strain rate of Newtonian fluids (Kirby & 
Kronenberg 1987). Further, strain softening or strain 
hardening, common in natural deformations (White et 
al., 1980, Neurath & Smith 1982), may change the 
rheology. Therefore, not only is an assumption of 
steady-state deformation required, but also one of 
steady-state rheology. Consider, for example, a ductile 

shear zone that undergoes strain softening during a 
simple shear deformation. In this case, the kinematics 
are still predictable, but the stress-strain rate relation- 
ship is not. The use of stress will ultimately limit, rather 
than expand, vorticity analysis. 

Another limitation of Weijermars’s stress analysis is 
that only plane strain deformation is considered. When 
one considers three-dimensional deformation, or even 
volume loss combined with pure and simple shearing, 
the unique relationship between flow apophyses (or 
ISA) and Wk, does notexist, i.e. the ISA (or stress axes) 
orientation does not uniquely determine deformation. 
The only way to quantify three-dimensional defor- 
mation is through complete description of the kinema- 
tics. 

Often, in geological studies, we contend that stresses 
are the principal cause of the kinematics. However, even 
with a known (and simple) rheology and homogeneous 
deformation, this relation is not true. The deformation 
and vorticity that result from identical orientation of the 
stress axes are significantly different in each case (e.g. 
Fig. 3). The tectonic boundary conditions that cause, for 
example, transpression vs other three-dimensional de- 
formations are potentially as important to the sub- 
sequent deformation as the orientation of the ISA (or 
stress axes). A qualitative description of deformation 
type-such as three-dimensional flattening strain com- 
bined with a simple shear-must accompany calculation 
of the stress axes (or ISA) orientation or calculation of 
W,, if deformation is to be defined. The often over- 
looked role of boundary conditions plays a significant 
role in determining kinematics in three-dimensional 
deformations. 

A more philosophical consideration is that stress 
simply is never recorded in rocks. Any indicator of 
stress-such as borehole breakout, mineral recrystalli- 
zation, dike injection, etc.-inherently records a strain, 
albeit a small one in some cases. It is more appropriate to 
describe these ‘stress’ features as indicators of either 
instantaneous strain or small, incremental, finite strain. 
In even the most straightforward cases, an extra step of 
interpretation is necessary to calculate stresses from 
geologic materials. In less straightforward cases, such as 
stress indicators in anisotropic rock, stress analyses are 
highly questionable, although deformation analyses (cf. 
Dennis & Secor 1990) are still applicable and useful. 

Pure shear ‘bias’ of Wk, 

Because the three-dimensional deformation tensor 
[equation (9)] is divided into three pure shear com- 
ponents and three simple shear components, we can 
investigate the relative roles of these parameters on 
estimates of W,. First, consider a case of plane strain, 
sub-simple shearing deformation (e.g. Simpson & 
DePaor 1993). As shown in equation (lo), W, can be 
thought of as a non-linear ratio of the pure shear and 
simple shear components of deformation, assuming a 
steady-state deformation. It is this non-linearity that 
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‘biases’ the Wki value toward the pure shear component 
in two separate ways. 

Since we are interested in the response of material, we 
can compare the orientation of the ISA for pure shearing 
(0 = 0”) and simple shearing (0 = 45”). The exactly 
intermediate case between pure and simple shearing 
would have a maximum axes of the instantaneous strain 
oriented at 8 = 22.5”. As can be seen, this occurs at 
W, = 0.75 (Fig. 2). All W,, < 0.75 are more affected by 
the pure shear component of deformation. Therefore, a 
Wki = 0.5 does not imply equal components of pure and 
simple shearing, but rather that the pure shear com- 
ponent dominates the deformation. 

The other way that W, is ‘biased’ toward the pure 
shear component concerns how strain accumulates dur- 
ing progressive deformation. The pure shear component 
accumulates efficiently due to its coaxial nature, while 
simple shear is the least efficient way of accumulating 
realistic finite strain (Pfiffner & Ramsay 1982). This is 
shown in Fig. 6, where the pure shear component is 
shown to grow substantially faster than the simple shear 
component. Therefore, a deformation with a constant 
Wki between 1 and 0.75, although instantaneously more 
influenced by the simple shear component, will record a 
strain that increasingly reflects the pure shear com- 
ponent of deformation. 

This pure shear ‘bias’ also applies to three- 
dimensional deformations. Figure 7(a) shows the orien- 
tation of the three principal strain-rates (i 1, S2 and Ss) for 
a transpressional deformation, a combination of vertical 
stretching compensated by horizontal contraction and 
an orthogonal simple shear. The pure shear component 
of deformation extends material in the vertical direc- 
tion, causing the direction of i1 to be vertical, The simple 
shear component acts orthogonal to the pure shear 
component, and causes the direction of i1 to be horizon- 
tal. The switch between the two cases occurs at 

3 
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Fig. 6. Paths of constant IV,, in y-k space for plane strain combi- 
nations of simultaneous pure and simple shearing, where y is the shear 
strain and k is the pure shear component. Non-linearity of W, paths is 
a result of the finite strain caused by the pure shear component 

increasing faster than that caused by the simple shear component. 

W,, = 0.81. Therefore, as for the sub-simple shearing 
case, a W,, = 0.5 implies that the pure shear component 
dominates the deformation. Additionally, the pure 
shear component dominates the finite deformation, so 
for transpressional deformations in which 1 > W,, > 
0.81, the long axis of the finite strain ellipsoid eventually 
becomes vertical. This effect is discussed in greater 
detail in Tikoff and Teyssier (1994b) and Fossen et al. 

(1994). 

PRACTICAL WAYS OF FINDING W, IN 
NATURALLY DEFORMED ROCKS 

The above discussion shows that considerable com- 
plexities are involved in three-dimensional W, analyses, 
and that Wk, alone is not a good measure of three- 
dimensional deformations. All of the currently used 
methods of finding W, from rocks assume plane strain 
deformation or very simple three-dimensional defor- 
mations. The following sections summarize the most 
useful methods. Although most of these methods are 
two-dimensional, they can in principle be modified to 
cover certain three-dimensional deformations, in which 
case the methods are restricted to the particular type of 
deformation in question and cannot be generalized very 
easily. 

In principle, any fabric or structure that reveals some 
aspect of the deformation history in a rock may be used 
to extract or approach the average kinematic vorticity in 
a rock. Elliott (1972, p. 2628) defined three possible 
measures of non-coaxiality that can be used in structural 
geology. These are: (1) the orientation and magnitude of 
the finite and instantaneous strain axes; (2) the orien- 
tation and magnitude of two finite strain ellipses that 
record different amounts of the steady-state defor- 
mation; and (3) the rate at which material lines rotate to 
become parallel to the ISA. It is generally the latter 
which is considered in mathematical treatments (e.g. 
Means et al. 1980, Lister & Williams 1983). 

Simpson & De Paor (1993) define an additional poss- 
ible reference, namely that of the shear zone boundary 
(i.e. flow apophyses). That is, assuming that the shear 
zone boundary parallels one of the flow apophyses, one 
can use the orientation of the other flow apophyses to 
define the vorticity [equation (14)]. While this method 
may be the most applicable to measuring vorticity in the 
field, it needs rigorous testing before use. It is unclear 
whether theoretical quantities such as flow apophyses 
and maximum shear strain rates will necessarily corre- 
spond to physical structures such as shear zone bound- 
aries and shear band orientations (Bobyarchick 1986). 
Heterogeneities within a given rock (e.g. inclusions, stiff 
layers, pre-existing anisotropy) may be more important 
in controlling shear band orientation than the flow 
apophyses or maximum shear strain directions. 

Any of the above four measures of non-coaxiality are 
completely equivalent ways of treating W,, and the 
choice should be constrained by the particular setting. 
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0’45” Wk=l 

> 

8’=52” Wk=O.91 

Fig. 7. The W,, estimates from en 6chelon tension fracture orientation in transtensionaVtranspressiona1 setting (based 
loosely on Jackson & Sanderson 1991). (a) Graph relating ISA orientation to WkL (Fossen & Tikoff 1993); (b)-(d) en 
tchelon tension fracture arrays, whose extent defines orientation of shear zone. En echelon tension fracture arrays should 

not form above 55” for transtension/transpression. 

Deformed markers in shear zones 

In some shear zones, the finite strain ellipsoid can be 
calculated from deformed markers in sections perpen- 
dicular to the shear zone and parallel to the shear 
direction (lineation). Combined with the angle between 
the long axis of the finite strain ellipsoid and the shear 
direction, W, can be found. Using an example of sub- 
simple shearing (Fig. Sa), a finite strain ellipse oriented 
at 23” to the shear zone boundary with an aspect ratio of 
2.0 implies a steady state deformation of W, = 0.9 (Fig. 
9). The critical assumption is that of steady-state flow 
and the type of deformation. If the shear zone has a 
‘perfect’ geometry, i.e. parallel boundaries and unde- 
formed walls, simultaneous simple shear and volume 
change may be assumed, and Fig. S(b) is appropriate. If 
pure shear, simple shear and volume change were all 
active, then the volume change must be calculated 
independently, e.g. from chemical analyses, and 
equation (11) should be applied. 

Figure 8 can also be used for solving the case of two 
finite strain ellipses with different orientations and mag- 
nitudes. Using any two finite strain ellipse magnitudes 
and the angular relation between them, a unique Wki 
value could be defined. This type of example does not 
require knowledge of, but would indicate, the orien- 
tation of the shear zone boundary. For example, the R = 
1 intercept of the W, = 0.9 line would indicate the 
orientation of the ISA and, consequently, the flow 
apophyses (shear zone boundary) (Fig. 8a). Similarly, 
one can use Fig. 8 if the orientation of ISA (32” in this 
case; Fig. 9) or flow apophyses (Fig. 2), relative to the 
shear zone boundary, is available. Alternatively, one 
could also use the orientation of the ISA and any finite 
strain ellipse, using Fig. 8, if the shear zone boundary 
was unknown. 

If several measurements of finite strain can be ob- 
tained, the steady-state condition can be tested. If a 
shear zone responded to steady-state deformation, the 
15 11:12-I 
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Fig. 8. Diagram showing unique relationship between ratio R and 
orientation of finite strain ellipse for various W,, values, assuming 
steady-state (a) sub-simple shearing; and (b) anisotropic volume loss 
in y-direction and simple shearing; 0’ is the angle between the long axis 
of finite strain ellipse and deformation zone. The W,, lines can be 

considered as deformation paths for steady-state deformations. 



1780 B. TIKOFF and H. FOSSEN 
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Fig. 9. Fictitious shear zone with instantaneous (e.g. stylolites) and 
finite strain markers (ellipses), from which IV,, can be determined. 
Finite strain ellipses indicate elliptical ratio and orientation from the 

shear plane. 

measurements should plot along a constant W, curve 
(e.g. Fig. 8a for sub-simple shearing). If they do not, as 
in the case demonstrated by Srivastava et al. (1995), then 
the W, simply represents an average kinematic vorticity 
number for the deformation. 

Porphyroblasts 

Because the vorticity vector may be interpreted as 
twice the rate of rotation of a rigid spherical inclusion in 
a ductile matrix, rigid spherical inclusions may be used 
to obtain an approximate estimate of the vorticity 
(Ghosh 1987). In this case, the rotation fi of the in- 
clusion must be extracted from the rock, e.g. by looking 
at inclusion patterns in garnets (Vissers 1989). For 
steady-state, plane strain deformations, y = 2s1. Com- 
bined with a strain estimate from the matrix, 
an approximate estimate may be obtained for 
intermediate-low W, deformations by using equation 
(6) in Ghosh (1987). However, a more exact estimate 
may be obtained using the equation 

wkZ = v2{ln(l +y*)2j + (Y)~ 
(17) 

(Appendix C) if the volume change can be determined 
from independent means, e.g. chemical analyses. Simi- 
larly, wki may be determined for a sub-simple shear 
deformation [using equation (ll)] if the pure shear 
component (k, = l/Q can be extracted from the de- 
formed wall rocks. 

Passchier (1987) emphasized that the orientation of 
immobilized (non-rotating) porphyroblasts/clasts with 
respect to the shear plane is a function of w,, the shape 
of the clasts and the ratio of the ISA. Therefore, knowl- 
edge of which clasts remain immobilized allows esti- 
mation of wk;. The method is not very accurate for 
naturally deformed rocks, probably due to heterogen- 
eity, local strain partitioning, and slip along the particle 
boundaries. 

Deformed sets of dikes or veins 

Deformed sets of veins and dikes represent another 
potential means for extracting wki from rocks, since such 

objects variably record their respective stretch history 
(Talbot 1970, Hutton 1982). By mapping the various 
geometric sectors of the same deformation history (bou- 
dinaged then folded, etc.), Passchier (1990) shows how 
wk, can be estimated, even if the finite state of strain is 
unknown (also see Wallis 1992). The main assumptions 
are steady state sub-simple shearing and/or volume 
change deformation. 

Passchier & Urai (1988) combined information from 
fibers and veins for vorticity analysis. By studying the 
relative rotation of pre-existing veins and extracting ISA 
from fiber orientation, they obtained an estimate for 

wk,. 

Crystallographic fabrics 

Wallis (1992) used the assumption that the central 
girdle of quartz c-axis diagrams develops perpendicular 
to the shear plane (i.e. API) in sub-simple shearing. 
Together with independent estimates of finite strain, he 
obtained an estimate of wk;. The assumptions include 
steady-state, plane strain deformation with no volume 
change, in addition to the relationship between crystal- 
lographic fabric and the shear plane. Law et al. (1984) 
and Schmid & Casey (1986) also attempted similar 
methods of correlating quartz fabrics to vorticity. Due to 
the uncertainties in crystallographic fabric develop- 
ment, this method is perhaps best considered as semi- 
quantitative. 

Calcite c-axis shows slightly more hopeful results of 
correlating vorticity to petrofabric development. Wenk 
et al. (1987) used the obliquity of the (0001) maximum or 
c-axis of calcite, relative to the shear plane, to determine 
the w, of deformation. This type of analysis was sub- 
sequently applied to other field examples (e.g. Erskine 
et al. 1993). As pointed out in these analyses, potential 
problems such as strain partitioning must be addressed 
when correlating this type of analysis to an entire zone. 

Tension gashes and fibers 

Tension gashes and fibers may provide information 
about the ISA, and its angle to the shear zone may give 
an accurate and simple estimate of wki (Fossen & Tikoff 
1993). This method is based on the relationship between 
the ISA and wki. However, it is necessary to assume a 
particular type of two- or three-dimensional defor- 
mation, applying different formulas or graphs in each 
case. For combinations of sub-simple shearing, Fig. 8(a) 
may be applied; for combinations of simple shear and 
volume change across the shear zone, Fig. 8(b) is appro- 
priate; and for transpression/transtension, Fig. 7(a) is 
appropriate. If a deformation ‘type’ can be identified, 
then a three-dimensional vorticity number can be ob- 

tained. 

An example is given in Fig. 7, based on studies by 
Jackson & Sanderson (1991), Jackson (1991)) and Tikoff 
& Teyssier (1992). In these studies, an Cchelon veins 



were considered to form in transtensional and transpres- CONCLUSION 
sional deformations. The veins were assumed to open in 
the it direction and the fracture tip was oriented in either The internal kinematic vorticity number (W,,) may be 
$ or Sj direction (corroborated by the occurrence of a useful tool in two-dimensional structural analysis, but 
stylolite peaks). Using fracture tips and the orientation in most three-dimensional deformations W, becomes 
of the shear zone boundary, Wki can be determined (Fig. less precise and thus less useful. Some commonly made 
7a). In this case, the boundary conditions (e.g. trans- assumptions for two-dimensional deformation are 
pression) of deformation can also be corroborated. Both therefore not applicable to three-dimensional defor- 
Jackson & Sanderson (1991) and Tikoff & Teyssier mations. For example, neither the orientation of the 
(1992) noticed that en echelon fracture sets rarely form flow apophyses nor instantaneous strain axes, with re- 
at greater than 55” from the shear zone boundary at the spect to the shear zone boundary, result in knowledge of 
studied locality. Notice that the i1 direction becomes W,,. In three dimensions, the recognition of the ‘type’ of 
vertical for transpressional cases if Wkz < 0.81 (i.e. pure, deformation-i.e. transpression (strict0 sensu) vs flat- 
shear-dominated transpression), corresponding to the tening with an orthogonal simple shearing-in addition 
case where is is oriented at greater than 55” to the shear to a W, estimate is necessary to describe deformation. 
zone boundary. Therefore, the boundary conditions of Therefore, vorticity analysis in three dimensions must 
deformation (e.g. transpression) can also be determined also include a qualitative description of the deformation, 
by judicious use of strain data (Fossen et al. 1994). exhibiting the importance of boundary conditions in 

geological processes. 

Porphyroclast interaction The mathematics derived in this paper is applied to 
finding practical ways of determining W, from naturally 

Tikoff and Teyssier (1994a) used the interaction of deformed rocks. Knowledge of the orientation of the 

porphyroclasts to estimate W,,. Their vorticity analysis is flow apophyses or ISA can often be used to determine 

based on both the differential rotation of elliptical clasts W, and/or constrain the boundary conditions of defor- 

and particle paths for deformations of different W, mation. Gradients in finite strain are also capable of 

values. The result is that fewer clasts tend to imbricate determining W, and boundary conditions, if steady- 

during high Wk, sub-simple shearing, since imbricated state deformation is assumed. Steady-state deformation 

clasts (which are being held together by their particle is best justified as a first-order approximation if kinema- 

paths) rotate quickly in simple shearing-dominated de- tic processes are constant over sufficient time to create 

formation and become mutually independent. There- deformation. The assumption of steady-state defor- 

fore, knowledge of finite strain and number of imbri- mation is unlikely for many geological settings, but can 

cated clasts can provide an estimate of W,. The authors be tested using some of the methods outlined above. 

also use a shape fabric of the elliptical clasts to corrobor- 
ate their W,, estimate from imbrication. Acknowledgements-This work was supported by a University of 
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DISCUSSION ments to this paper. 

The basic assumptions involved in all the afore- 
mentioned vorticity analyses will always impose a sig- 
nificant amount of uncertainty in vorticity estimates. 
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Writing out the velocity field in equation form, we get: 

Vl = CJ + Y*yY + YX;,I 

?2 = YyXx + iyY + Yy;ylz (A4) 

vs = Y& + i;ry + Q. 

The vorticity vector w is defined as the curl of the velocity field v. 
Therefore, for our three-dimensional deformation, the vorticity vector 
is 

w= (A5) 

and its magnitude is therefore 

w = V(i;, - i;Z)” + (9X;,, - iz# + (Yyx - i;,)‘. (A6) 

To find the principal strain rates, we follow the analysis of Means et 
al. (1980), who define the kinematic vorticity number as 

w,= W W 
=- 

V2($ + s; + s:, d2X 

where II is the invariant second moment pf the stretching tensor 
(Erikson 1960). Using the stretching tensor S [equation (A2)] we can 
find II from the relationship (Means et al. 1980): 

II = trace (SST) = 2 + $ + 2 

+ t](l;,, + ,)’ + (1;,, + Yd2 + (Yyz + ?,,>‘I. (A8) 

The kinematic vorticity number can thus be written as 
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For the case of an upper triangular velocity gradient matrix, as given in 
equation (5), the expression for Wkj can be simplified to 

wk, = 

To relate this number to the actual components of pure and simple 
shear, we use the substitutions of (8) and obtain 

Wk, = ~\/(rd’ + (nz)’ + (YJ 
WnW + ln(k2Y + W#l + (rJ2 + (~~3’ + W” 

. (All) 

The eigenvectors and eigenvalues of the velocity gradient tensor 
define the orientation and magnitude of the three flow apophyses 
(Bobyarchick 1986). As eigenvectors of L, the flow apophyses are 
orientations in space that represent the maximum, minimum and 
intermediate gradients of particle motion defined at an instant. The 
motion of all material points along the flow apophyses is either directly 
toward, away from, or fixed with respect to the origin. For an upper 
triangular deformation matrix [equation (S)], the magnitude of the 
flow apophyses (eigenvalues of L) are simply the instantaneous pure 
shear rates, and their orientations (eigenvectors of L) are 

(3412) 

(Tikoff and Fossen 1993). The first apophysis is always parallel to the 
x-axis and the second lies in the x-y plane, but generally inclined to 
both axes. The last apophysis is generally inclined to all three axes, 
although, for a two-dimensional deformation (yXz = v,,, = 0), the flow 
apophysis is parallel to the z-axis. Since L is not a symmetric matrix, 
the eigenvectors (flow apophyses) are not necessarily mutually per- 
pendicular . 

The eigenvectors and eigenvalues of the stretching tensor S define 
the orientation and magnitude of the instantaneous stretching axes 
(e.g. Passchier 1988b) or instantaneous strain axes (Tikoff & Teyssier 
1994b), in either case referred to as the ISA (Malvem 1969, Lister & 
Williams 1983). The ISAs represent the direction of maximum, inter- 
mediate and minimum change of material line length in an instant. The 
eigenvalues give the rate of stretching of these material lines. Because 
S is symmetric, the eigenvectors, or ISA orientations, are mutually 
perpendicular. These values are best solved numerically for three- 
dimensional deformations. 

However, analytical expressions for the magnitude and orientation 
of the ISA are appropriate for two-dimensional deformations. For S 
given by 

the eigenvalues are given by the equations 

(A13) 

= (ix + i,) If: xqi* - i,)” + jJ 
2 (A14) 

The eigenvectors of S can be found by inserting the eigenvalues into 
the stretching tensor. These eigenvectors must satisfy the equation 

where e is an eigenvector. We can restrict our interest only to r,_,, , 
since we only need to know the orientation of the long axis of the finite 
strain ellipse. Multiplying out equation (AlS), we get 

and 

(A16a) 

;X + (iY - S,,)y = 0. (A16b) 

Using equation (A16) and tan 6 = y/x, the angle between the long axis 
of the instantaneous strain or extensional ISA (corresponding to the 
largest eigenvalue of S) and the positive x-axis, is 

(A17a) 

or 

- (‘X + ‘,) + ‘2w?r,}. (AI7b) 

Using the time-independent relationships given in equation (8), 
which assume a steady-state deformation, one can express instan- 
taneous strain quantities in terms of finite strain components of the 
deformation matrix. 

APPENDIX B 

Comparison of two-dimensional and three-dimensional deformation 

We compare two- and three-dimensional deformations by using 
comparable components of pure shear (/cl lk3 = 4) and a simple shear 
(y = 1) in the plane which contains the long and short axes of the finite 
strain ellipsoid. This two-dimensional, sub-simple shearing defor- 
mation gives a w, = 0.585 using equation (10). The three-dimensional 
deformations must be calculated in a more complicated procedure. 

Pure constriction 

In the case of pure constriction, we have the conditions 

Yr= 1, k,>k2= k3, kIk2k3= 1, and kIlk3=4. (Bl) 

Combining these conditions gives 

k, = (0.25)1’3 = 0.630, k2 = 0.630, k, = 2.52, (B2) 

and, using equation (lo), Wkz = 0.530. 

Pure flattening 

For pure flattening, we have 

or= 1, klk2k3 = 1, k, = k,> k3, and k,lk3 = 4. (B3) 

Combining these conditions gives 

k, = 41’3 = 1.5874, k, = 1.5874, k3 = 0.39685, (B4) 

and w,, = 0.530. 

Notice that the effective shear, I, is different for the three cases: 

rtwo-dimensional = 1.08, rflattening = 1.36 and rconstriction = 0.85, 

as are the dimensions of the axes of the finite strain ellipse: 

1 max--two-dimensional = 5.22, ‘6nin--two-dimensional = 0.191, 

I max--constrictm~~ = 8.30* hk-constriction = o.303a 

Lx-flattening = 3.29, and &,,irr--Hattening = 0.120. 

However, the finite strain ellipse ratio in a vertical plane that contains 
the long and short axis of the finite strain ellipse is the same for all these 
cases, R = 27.35, and a direct comparison can bc made. 

APPENDIX C 

Anisotropic volume loss 

Anisotropic volume loss can be thought of as a compressive pure 
shear component of deformation that is not compensated for by 
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extension (Sanderson 1976). For a two-dimensional, steady-state (Fossen & Tikoff 1993), where A represents anisotropic volume 
deformation involving simultaneous volume loss and simple shearing, change. The kinematic vorticity number for anisotropic volume loss 
the velocity gradient tensor is given by: acting perpendicular to a simple shear component is 

L=O f 
[ 1 0 d’ (Cl) wk’ = V\/z{ln(l +‘A)‘) + (r)” 

where b is the instantaneous volume loss rate and + is the simple shear 
Using these relations, it becomes possible to correlate finite strain 

strain rate. Using the relations and W,,, as shown in Fig. 8(b). Anisotropic volume loss affects 
vorticitv estimates. For a given orientation of the flow aooohvsis. the 

and 

1’ = ylt Wk, vahe is always low& for anisotropic volume loss and simple 
shearing compared to sub-simple shearing. Because the former case 
does not elongate material parallel to the r-direction, the rotation of 

exp(dt) = 1 + A, (C2) material lines is slower-and thus Wk, is lower-when the flow 
apophyses are identical. An alternative way of stating this relationship 

and assuming a steady-state deformation, a general deformation is that the extensional ISA is oriented closer to the x-direction for a 

matrix (position gradient tensor) is given Wk, value for sub-simple shearing. For example, compare the 
R = 1 values for Wk, = 0.9 for the case of sub-simple shearing (32”; Fig. YA 

[ 1 1 In(1 + A) 

8a) and anisotropic volume loss and simple shear (36”; Fig. 8b). As for 

D= (C3) 
the case of sub-simple shearing, a given W,, value corresponds to 
either volume loss or gain in the y-direction, thereby explaining the 

0 l+A two W,, values in Fig. 8(b). 


